Single amino acid mutation of SR-BI decreases infectivity of hepatitis C virus derived from cell culture in a cell culture model
نویسندگان
چکیده
AIM To investigate the effect of a single amino acid mutation in human class B scavenger receptor I (SR-BI) on the infectivity of cell culture-derived hepatitis C virus (HCVcc) in SR-BI knock-down Huh7-siSR-BI cells. METHODS Site-directed mutagenesis was used to construct the SR-BI S112F mutation, and the mutation was confirmed by nucleotide sequencing. SR-BI knock-down Huh7-siSR-BI cells were transfected with SR-BI S112F, SR-BI wild type (WT) and control plasmids, and then infected with HCVpp (HCV pseudoparticles) and hepatitis C virus derived from cell culture (HCVcc). A fluorescence assay was performed to analyze the effect of the S112F mutation on HCV entry; quantitative real-time PCR, immunofluorescence, and Western blot assays were used to analyze the effect of the S112F mutation on HCV infectivity. CHO cells expressing WT and SR-BI S112F were incubated with the HCV E2 protein expressed in HEK 293T cells, and flow cytometry was performed to examine the ability of SR-BI S112F to bind to the HCV E2 protein. Huh7-siSR-BI cells were transfected with SR-BI WT and the S112F mutant, and then DiI-HDL was added and images captured under the microscope to assess the ability of SR-BI S112F to take up HDL. RESULTS The SR-BI S112F mutation was successfully constructed. The S112F mutation decreased the expression of the SR-BI mRNA and protein. SR-BI S112F decreased HCV entry and HCVcc infectivity in Huh7-siSR-BI cells. The S112F mutation impaired the binding of SR-BI to HCV E2 protein and decreased the HDL uptake of SR-BI. CONCLUSION The S112F single amino acid mutation in SR-BI decreased the levels of the SR-BI mRNA and protein, as well as the ability of SR-BI to bind to the HCV E2 protein. Amino acid 112 in SR-BI plays important roles in HCV entry and the infectivity of HCVcc in vitro.
منابع مشابه
Scavenger receptor BI and BII expression levels modulate hepatitis C virus infectivity.
Hepatitis C virus (HCV) enters cells via a pH- and clathrin-dependent endocytic pathway. Scavenger receptor BI (SR-BI) and CD81 are important entry factors for HCV internalization into target cells. The SR-BI gene gives rise to at least two mRNA splice variants, SR-BI and SR-BII, which differ in their C termini. SR-BI internalization remains poorly understood, but SR-BII is reported to endocyto...
متن کاملProduction and characterization of high-titer serum-free cell culture grown hepatitis C virus particles of genotype 1-6.
Recently, cell culture systems producing hepatitis C virus particles (HCVcc) were developed. Establishment of serum-free culture conditions is expected to facilitate development of a whole-virus inactivated HCV vaccine. We describe generation of genotype 1-6 serum-free HCVcc (sf-HCVcc) from Huh7.5 hepatoma cells cultured in adenovirus expression medium. Compared to HCVcc, sf-HCVcc showed 0.6-2....
متن کاملVIRAL HEPATITIS Oxidized Low-Density Lipoprotein Inhibits Hepatitis C Virus Cell Entry in Human Hepatoma Cells
Cell entry of hepatitis C virus, pseudoparticles (HCVpp) and cell culture grown virus (HCVcc), requires the interaction of viral glycoproteins with CD81 and other as yet unknown cellular factors. One of these is likely to be the scavenger receptor class B type I (SR-BI). To further understand the role of SR-BI, we examined the effect of SR-BI ligands on HCVpp and HCVcc infectivity. Oxidized low...
متن کاملComparison of PEG Interferon Loaded and non-Loaded Iron Oxide Nanoparticles on Hepatitis C Virus Replication in Cell Culture System
Background and Aims: Iron oxide nanoparticles are among the most effective tools which can replace current medical techniques for diagnosis and treatment of various diseases. Hepatitis C infection is one of the main health problems in the world, affecting around 3% of the world's population. This infection can develop into liver cirrhosis and liver cancer over the time in 80% of patients. In t...
متن کاملHighly efficient JFH1-based cell-culture system for hepatitis C virus genotype 5a: failure of homologous neutralizing-antibody treatment to control infection.
BACKGROUND Recently, a hepatitis C virus (HCV) cell-culture system was developed that employed strain JFH1 (genotype 2a), and JFH1-based intra- and intergenotypic recombinants now permit functional studies of the structural genes (Core, E1, and E2), p7, and NS2 of genotypes 1-4. The goal was to adapt the system to employ genotype 5. METHODS Huh7.5 cells infected with SA13/JFH1, containing Cor...
متن کامل